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Abstract. Screening and vertex operators for u(n) are given in t e m  of generators 
of the goup left action on the flag manifold U(n - l)/SU(n). Their matrix elements 
in a hasis of holomorphic sections of a vector bundle are computed. 

1; mtrad_uct.ifin 

The construction of solutions for two-dimensional conformal field theory is a problem 
of great current interest. I t  can he argued that two-dimensional conformal field theory 
and Wes-Zumino-Witten (WZW) theories are intimately related to the representation 
theory of the infinite-dimensional Virasoro and affine Kac-Moody algebras respect- 
ively. In this spirit, Bouwknegt et al (1990) have generalized results from Bernstein 
e t  al(1971), Kostant (1974), Zelobenko (1973) and Kempf (1978) concerning the con- 
struction of irreducible modules of compact finite-dimensional Lie algebras in Fock 
spaces, to the construction of irreducible modules of affine algebras. Such constrnc- 
tions have much in common with the geometrical construction of Lie algebra modules 
in terms of holomorphic sections of a line bundle over an appropriate flag manifold. 

The geometric approach to representation theory yields the celebrated Borel-Weil- 
Bott theorem (Bott 1957) which makes explicit the geometrical origiu of Weyl's charac- 
ter formula (see also the recent partial rederivations of the theorem by physicists (Stone 
1989, Alvarez el al 1990)). In this framework, Weyl's character formula is regarded 
its an alternating sum of traces over Fock spaces. The geometric approach has also 
been favoured in the physics literature, albeit under various guises. A non-exhaustive 
list would necessarily include: the coherent state approach to representation theory of 
Lie algebras (Perelomov 1986), which parallels the standard holomorphic line bundle 
construction; the more recent vector coherent state approach to representation theory 
of Lie (super)algebras (Rowe 1984, 1985, Rowe e l  al 1988, Deenen and Quesne 1984, 
Quesne 1986, Castaiios el al 1985, Hecht 1987, Le Blanc and Rowe 1988, 1989,1990), a 
generalization of ordinary coherent state theory which parallels the holomorphic vector 
bundle construction (Bott 1957, Griffiths and Schmid 1969); geometric quantization 
(Kostant 1970, 1977, Kiriiiov 1976, Woodhouse iY8U, Guiiiemin a n d  Sternberg 1982); 
boson expansion theories (Dobaczewski 1981, 1982, Klein and Marshalek 1990); free- 
field approach to the representation theory of the Virasoro and Kac-Moody algebras 
(Feigen and Frenkel 1990, Ito and Kazama 1989). These constructions share a coni- 
mon problem: the highest weight Fock space modules are, in general, not irreducible, 
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nor completely reducible. A resolution (identification of the irreducible sub-modules) 
of the Fock space modules can nevertheless be achieved upon introduction of a new 
concept, that of ‘screening’ operators. 

Screening operators have recently received much attention in the representation 
theory of infinite-dimensional algebras (Dotsenko and Fateev 1984, 1985, Bouwknegt 
et 01 1990). They are used to construct invariant homomorphisms and singular vectors 
of non-fully reducible modules. Bouwknegt et a1 have underlined the fact that ,  in a Lie 
algebra context, the concept of screening operators stands for that of quasi-invariant 
differential operators (Kostant 1974). They also have alluded to the fact that  explicit 
expressions for ‘vertex’ (equivariant tensor) operators, useful for the derivation of 
‘fusion’ (Kronecker product) rules, can be given in terms of screening operators. 

The primary focus of this paper is to elaborate on the concept of vertex operators 
in a Lie algebra context, although we remark that the present construction can be 
generalized t o  the quantum groups (Biedenharn 1990). Combining the strength of 
the vector coherent state approach and of the vertex operator formalism, we obtain 
analytical results concerning the structure of vertex operators. (Due to the relative 
ease with which one can construct Gel’fand bases for the unitary group (Louck 1970, 
Hecht et  a1 1987), we have restricted explicit computations to u(n) with special em- 
phasis on u(3) . )  The equivariance condition (2.6) is used for the explicit construction 
of equivariant tensor operators in geometrical terms (sections 3 and 4). Their struc- 
ture is discussed (section 4). In particular, the structure of the elementary, totally 
symmetric and octet u(3) vertex operators now have a canonical form which, for the 
first time, contains explicitly the hitherto abstract canonical upper pattern (section 
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4.5). 

2. Vertex operators for Lie algebras 

2.1. Fock space realization of Lie algebras 

In this section, we review the results compiled by Bouwknegt et a1 (1990) concern- 
ing the construction of irreducible modules of finitc+dimensional Lie algebras in Fock 
spaces as they provide the theoretical setting for the present study. 

A realization for a simple finite-dimensional Lie algebra g of rank I can be given 
in terms of linear differential operators on the space of holomorphic sections of a line 
bundle over the flag manifold B-\G parametrized by complex coordinates z .  This 
bundle is determined by a character xA : B- - C’ of the Bore1 subgroup B-. The 
sections can be identified with functions (coherent states) 

$ A b )  = (AlexP(z)l+) = z m e e  (2.1) 
O E A +  

satisfying 

(Albexp(Z)lvj) = xA(b)(AlexP(z)l+) b% E B - .  

The group G acts as a transformation group on the flag manifold by right multipli- 
cation. This induces a transformation on the coherent states and, consequently, a 
representation uA of the Lie algebra g in terms of linear differential operators: 

uA(x)(AlexP(z)l+) (Alexdz)xl+)  vx E g. (2.2) 
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For finite-dimensional representations of g, it is sufficient to restrict the function 
space to polynomials in  the complex coordinates in  which case one can interpret the 
module as the Fock space FA of a finite set of harmonic oscillators. There will be as 
many oscillators as there are positive roots for g as indicated in (2.1). 

Information concerning the highest weight state can be given more explicitly in 
terms of pairs of momentum-position operators ( p i , q i )  with commutation relations 

[p,, q j ]  = -is.. U ' 

The Fock space FA associated with A E h' (where h' is the dual space of the Cartan 
subalgebra h C g) is identified with Pol(z) @ CA, where CA is the one-dimensional 
space obtained from the highest weight state defined by In) = eiA'qlO). One thus has 

aAjhi)iAj =piiAj = AiiAj 

where Ai denotes the components of A with respect to a n  orthonormal basis in 11'. 
The translation operators eiA'9 span the 'model space' for g (Gel'fand and Zelevinsky 
1985). 

The Fock space realization described previously is not irreducible nor is it com- 
pletely reducible. There are many ways to characterize the subspace of FA corre- 
sponding to the irreducible module L A  of highest weight A,  In particular, this can be 
done elegantly in terms of screening operators (Bouwknegt et a/ 1990). To do this, 
one must look at  the left action of G. 

Using left multiplication, one induces a representation pA 

(2.3) V "  ,-_ 
" A  t U+ 

/ v \ l A l - . . n f - \ l " , , \  - /*I, v\ \,.I.\ 
PA(AI\*LI - = * P ( ~ I I Y /  = PI(-A I-IJ\"IIW/ 

for the raising subalgebra n+ of g, commuting with, but isomorphic to, ,y,,(n+). 
Screening operators 

si = p(e,i)e'a9.' 

are then introduced such that the irreducible module LA is given by 

LA = {U E FAl(si)'9 . o = 0, i = 1,2 ,  . . . ,  I ,  /, = ( A , h i )  + I} .  (2.4) 

This description of the irreducible module L A  is equivalent to the Borel-Weil descrip- 
tion of a module in terms of holomorphic sections of a line bundle. 

Given a simple Lie algebra g, the Weyl group W of g is generated by the reflections 
ri by the simple roots ai of g. Every element w E W can be written in the form1 
r. r .  . . . r .  and the length l(w) is defined as the minimal number of reflections pi 

required to construct w. Denote W ( k )  = {w E Wll(w) = k). A shifted action o f W  on 
A E h' is defined by 

* I  IS  I n (  

w * A  = w(A+ p )  - p 

with p half the sum of the positive roots of g. For wI ,  w2 E W, we write wI e w2 if 
wl = row2 for some (I E A+, and also /(w,) = /(w2) + 1. A partial (Bruhat) ordering 
can be defined on W: w 4 w' if and only if there exists wl,  w2, .  . . , wli E W such that 

w c w1 + w2 c . , .  c Wk + w' 
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The operators Qff' E (si)" are g-algebra invariants when acting on FA. We have 
the action 

Q(i) . 
l i  . F A -  

that is, the &s are intertwining operators. An intertwining operator Q : V - W is a 
homomorphism V - W of two g-modules commuting with the g-action on V and W. 
The set of such intertwining operators is denoted HomU,,(V, W) where U ( g )  . .  is the 
enveloping algebra of g. 

\-, 

Let 

MA = U ( g )  "A 

with U,, a highest weight vector, be the usual Verma module. There exists a one- 
to-one correspondence between singular vectors in the Verma module, that is, states 
U such that U+ . U = 0, and invariant intertwiners on FA.  For simple Lie algebras 
and finite-dimensional representations, these singular vectors uw are in one-to-one 
correspondence with elements in the Weyl group and occur for the weights w * A, 
w E W. Moreover, uw, E M,,, if and only if w' 5 zu. In this case, a homomorphism 

n r ~ - - - .  / n  n \ 
Ww,w'  C "y"'U(g)\'wulAI "w,*A/  

exists and a complex of Fock modules can be built in terms of these homomorphisms 
such that 

0 1  dl.-ll O - F p )  %! F t )  d, , . _  + F t )  - 0  

where s is the order of A+,  and 

( i )  - 
FA - @wEW('lFw*,4 

Explicit expressions for the su(3) nilpotent operators d ( Q )  can be found in Bouwknegt 
et 01 (1990). 

With Hi(d) = Ker d(')/Im d - ' ) ,  one has 

i = O  
otherwise 

H'(d)  = 

2.2. Vertez opemtors 

Abstractly, a shift tensor operator 7A2 is a tensor operator which maps the Hilbert 
space RA, carrying the irrep AI of g to the Hilbert space 'HA3 and to this one only. 
Such an operator is said to have 'good shift properties'. Vertex operators V are simply 
oscillator realizations and generalizations of shift tensor operators, that is, they map 

vA2(AI -A3)  ' FA,  'A, 

and, more precisely, they map the irreducible submodules LA, - L A , .  We shall desig- 
nate by V(i) the set of vertex operators which maps 
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The equivariance condition 

d ( O v ( i )  = v(i+I)d(') 

must be required for the vertex operators to have well-defined shift properties on the 
irreducible submodules. It is equivalent to restrict to the equivariance condition 

d(O)V(O) = V(l)&o) 

or, in more explicit terms, to 

I ; = ( A , ~ J + I  i = l , ~  ,..., I 

which is a key equation for the following. 
Vertex operators for finite-dimensional Lie algebras are relatively easy to construct 

(Bouwknegt et al 1990). A vertex operator VA2 with maximal weight and shift is given 
by the translation operator eiA2.9. All other highest weight vertex operators with lower 
shifts are obtained by multiplying ei"l.q by terms with an appropriate number of 
screening charges. In section 3, we carry out this construction in its entirety for 142). 
In section 4, important classes of vertex operators will be constructed for u(3) for 
which the u(2) results shall be needed. 

2.3. The u(n) algebra 

For notational simplicity, it is easier to work with the non-simple Lie algebra U(.) = 
u(l)@su(n).  The U(.) Lie algebra is defined through the commutator algebra 

[Ejj, EL,] = 6jL Ei, - &,,E,, 1 5 i, j ,  k, I 5 n. (2.7) 

Simple roots for its su(n) subalgebra are given by 

1 5 i _< n - 1. eDli = ei = E.  ,,,+1 (2.8) 

In root space, w e  set 

a; = e; - e; ,. (2.9) . T A  

with Euclidean scalar product 

( e i , e j )  = Sij. (2.10) 

The set of positive roots is given by 

A+ = { (ei  - e j ) ,  i < j )  

the set of negative roots by 

A- = { (e i  -ei), i > j] 
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The corresponding generators generate the nilpotent subalgebras n+ and n- respect- 
ively. For su(n), half the sum of the positive roots is given by 

R Le Blanc el a1 

(2 .11)  

The Cartan subalgebra for U(.) comprises the n weight operators E,?, 1 5 i 5 n.  

Irreducible representations for U(.) are labelled by the n entries mjn of the ar- 
are non-increasing 

For su(n), i t  is spanned by the n - 1 weight operators hi = Eii - Ej+l,j+l. 

ray [m,] = [ml,mzn , , . m,,] where the differences mi" - 
integers. One has  that  

Eiil!m,jhw) = mi,I!m,]hw). 

Equivalently, these irreps are labelled by the highest weights 

n 

m, = Cminej .  
i=1  

States in these irreps are labelled by t,he usual Gel'fand patterns (Louck 1970). In our 
model space, 

We shall consistently use in the following the secalled partial books pi, defined 
by 

p . . = m i j + j - i  (2.12) 
U 

(not to  be confused with the momentum operators pi). The importance of the partial 
hooks lies in the fact that the Weyl reflections acting on the irrep labels have simple 
expressions in terms of the partial hooks: the Weyl reflection ri interchanges pi, and 
pi+l,,, that  is, the Weyl group for su(n) acts on the partial hooks by permutations. 

8.4. Unii tensor opemtors for u(n) 

Unit shift tensor operators for u(n) can be given a canonical matrix realization as 
follows. Define a unit tensor operator 7 by the symbol 

( 2 . 1 3 )  

where 
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is the Gel'fand-Weyl pattern associated with the vector (m(')),, of the irrep [mi i) 1 ,  
and (r)n-l is an operator (inverted) pattern which canonically resolves all multiplicity 
(Louck and Biedenharn 1970). Such a unit tensor operator 7 in u(n) has an action 
on a generic state vector that  effects a change in the u(n) representation labels, that 
is, 7 : [m,] + [m,] + [A(r)], where [A(r)] = [Al(r), Az(r) ,  , , , ,An(r)] denotes 
the label shifts A,(r) (Biedenharn and Louck 1968, Louck 1970) and the sum is done 
componentwise (mi, + mi" +A,(r) ) .  The matrices of the unit tensor operator 'T are 
then u(n) vector addition (Wigner) coefficients: 

(2.14) 

where [m(')] = [mc')] + [A(r)]. (More details of this standard construction can be 
found in Louck and Biedenharn 1870.) 

The concept of projective operators (Louck and Biedenharn 1970), also needed in 
the following, has its origin in the observation that a tensor operator in U(.) is, a t  the 
same time, a tensor operator in  the subgroup u(n - 1). Assuming that all u(n - 1) 
unit tensor operators are known, we may expand the u(n) unit tensor operator 

where: 
(i) the object in the square brackets on the right-hand side denotes a unit projective 

operator, on the n(n) : u(n - 1) space (thus an u(n - 1) invariant operator), and 
(ii) ([mc?l]) is a n(n- 1) unit tensor operator with upper operator pattern (-/)"-?. 

The left-hand side of (2.15) operates on n(n) vectors I(m),) where (m), = (m!;), 
1 5 i , j  5 n, is an arbitrary Gel'fand-Weyl U(.) pattern, whilst the right-hand side 

(m,;), 1 5 i , j  5 n - 1; therefore, the projective operator acts on the factor space 
n(n) : u(n - 1). To be fully explicit, let us state that the matrix elemeiits of the 
projective operators (isoscalar factors) take the form 

has ([rr~"-~]) ( 1 )  acting on vectors of the u(n - 1) subgroup with (m)n-l = 

(2.16) 

where the u(n - 1) shifts Ai(-/) are defined similarly to the u(n) shift Ai(r)  shifts 

3. Vertex operators for 4 2 )  

The realization of the Lie algebra u(2) in terms of linear differential operators is well 
known. The representation U is defined by 

4 W w l  ~ ~ P ~ ~ l Z ~ I Z ~ l ~ ~  = (hwl exP(~l?Elz)XI4)  X E "(2). (3.1) 
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From this, one easily obtains 
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= 4 2  

@l1)  = P1- Z l z a l z  

4%) = P2 + Z l a a l z  

4%) = (PI - PZ)ZI ,  - Zt2% 

with the complex variable z12 parametrizing the g manifold U(l)\SU(2). T h e  highest 
weight vector Ihw) is written in terms of two pairs of momentum-position operators 
( p i , q i )  with 

bi, q j ]  = -is.. S J  1 5 i , j  5 2 

such that  

The action of the algebra (3.2) is unitary on the Fock space basis of mononomials 

(3.3) 

with the betweeness condition m12 5 mIl  5 m2, for the 4 2 )  Gel'fand pattern. The 
unitarizing coefficient I< is given by 

(3.4) 

(see also equation (4.5)). 
The left action for the raising algebra is given by 

p(E,,)(hwl exP(zlzEl2)I4 = (hwl(-E,z) exP(zlzEl2)I~) 

that is 

P(El2) = - 4 2  (3.5) 

and the unique screening charge for 4 2 )  is given by 

slz = e-'(P1-P') P(El2). (3.6) 

Under the algebra (3.2), the screening charge has null weight and maps the irrep [m,] 

s12 : [m12mz21 - b I 2  - Lm22 + 11. 
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The elementary unnormalized vertex operators in tensor operator notation are 
given by 

(3.711) 

(3.76) 

It is easily verified that their su(2) reduced matrix elements are given by 1 and 

[(mlz - m,, + 1)(m12 - ~ 2 2 ) 1 1 ~ 2  = [ (Pzz  - PlZ + 1)(Pzz - Plz)ll’z (3.8) 

respectively when these operators act on the irrep [m,zmza]. 
A generic 4 2 )  unnormalized vertex operator is given by 

( m12 ::, 0) = p l m s m t z - r u  12 (3.9) 
”” 

with shifts A(r) . .  = [m(j)] . - [m“)], that is 

A,(r) = A, = rll 
A,(r) = A, = mlz - rll. 

The action of the Weyl reflection r1 on the representation labels is 

p1 * [ml,, mzzl = [m,, - Lm,, + 11. 
We verify that the vertex operator (3.9) trivially obeys the equivariance condition 
(2.6): 

Correspondingly, it has 

as its 4 2 )  reduced matrix element when acting on the irrep [m,,m2,] as easily com- 
puted from equation (3.8) and elementary su(2) recoupling coefficients (see e.g. Le 
Blanc and Hecht 1987, appendix). 

The lower weight components of tensor (3.9) are easily obtained through the usual 
lowering procedure and one has 

(3.11) 
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where 
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A ( ' ) { X }  = [A, [ A , .  . . , [ A , X ]  . . .I]. . 
I: commutatm 

It is relatively straightforward to prove by induction that 

(PI - Pz - 212812 - j + ')j (3 .12 )  ,i(rllql tjq,)(eisl a )mx2-rlt-j  
12 

in terms of the rising factorial 

( l ) j  = (z)(z+ 1 ) .  . .(z+j - 1) (l)o = 1 

Matrix elements between states belonging to the basis (3.2) are then easily computed. 
With the help of the little compendium 

(3.13)  

(3.14) 
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where the last square array is the well known Regge symbol (Regge 1958) (a  magic 
square with the sum for all rows and columns given by J) here computed to  be given by 

where P is a polynomial given by 

4. Vertex operators for 4 3 )  

4.1. Left, right, unitary action and screening operators for u(3) 

The realization uA of the finite-dimensional simple Lie algebra 4 3 )  in terms of linear 
differential operators acting on the space of holomorphic sections of a line bundle over 
the flag manifold H\SU(3) - B-\SL(3) determined by the character xA : B- - C' 
is obtained through the eq1ualit.y 
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This representation for 4 3 )  can be untangled by performing the following non- 
linear change of variables: 

4 2  = 212 

4 3  = '23 

4 3  = '13 - Z21Z223 
1 

In terms of the new variables, and adjoining the three pairs of momentum-position 
operators (pi,qi) with 

[p. 1' q.]  I = -i6ij 15 i , j  5 3 

the expansion for the non-simple algebra u(3) can be written (we ignore the primes 
on the new variables) 

= 

u(E23) = 

2 2 

U ( E ~ J  = 

u ( E ~ ~ )  = 

Zi3fil - 213& - 213 zi3ai3 = E 2131 

Zi3& - 223E33 - 223 zi3ai3 = [=, 2231 

i = l  1=1 

2 2 

i=1  i=l  

where 
(i) the operators 

c12 = a12 

811 = Pl - 2 1 2 4 2  

E22 = Pz + z12a12 

E21 = ZlZ(P1 - P2) - ':2a12 

generate an inlrinsic u(2) algebra isomorphic to the one given by (3.2), 
(ii) the operator 

E33 = P3 

(4.4) 
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generates an intrinsic u(1) and 
(iii) Z is the u(2) scalar (Hecht el a /  1987) 

= ( z i3a j3 ) (E l j  - 6 i jG3)  - f ( f i3ajJ(z j3ai3)  + ( z k 3 a k 3 )  

where repeated indices are summed from 1 to 2. 
Expansion (4.3) can be recognized as the vector coherent stale expansion for u(3) 

(Hech! c! n! 1987). !E ?his fr.mel.m.k, the i::educib!e apace is new carried by bn!e- 
morphic sections of a uecior bundle with the fibre carrying an irrep of the intrinsic 
u(2)@u(l), labelled by [m13mz3]@[m33], while the base manifold is now parametrized 
by the pair of coordinates ( z l3 , rZ3)  transforming as an antispinor [O,- l ]  under the 
u(2) algebra generated by a ( E i j ) ,  1 5 i , j  5 2. (This base manifold is in fact a Kahler 
manifold isomorphic to (SU(2) x U(l))\SU(3) (Bordemann el a/ 1986).) 

It has been shown by Hecht el a/ (1987) how to unitarize the action of the linear 
differential operators (4 .3 )  on the (vector-coupled) Fock space of polynomials in the 
antispinor variables. For u(3), as generated by (4.3), the action is unitary on the 
u(2)-coupled basis 

(4.5) 

where the coupling is from right to left and 
(i) where 

w = m13 + m23 - mlz - m22 

is the eigenvaiue oi the operator u(E33j- L~~ = E;=, z,3&3 ithe antispinor r-number 
operator), 
(ii) where 2 is a polynomial in the antispinor variables (z13, r23) with highest 

weight component 

(iii) where the vector coherent state unitarizing factor is given by 

(set n = 3 here), 
(iv) where the sn(2) phase factor is given by 

O([mzl) = (Pt" ( l ) .  mz) = t(m1Z - mzz) 
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(v) and where the intrinsic vectors (the vectorial structure of the fibre) 

have been constructed in section 3, equation (3.3). 
The highest weight state for this representation is given by 

10) 1hw) = ,i(mrsqI+m,,sltmasss) 

The left action for the raising algebra n+ is determined through the equality 

PWW I exp(2) I 4  = (hw I (-X)exp(z) Id4 X E n+ 

The minus sign in this equation results in the vertex operators having phases consistent 
with a generalized Condon-Shortley phase convention (Biedenharn and Louck 1968). 
One finds 

The three screening charges (two simple and one derived) for u(3) are therefore 
given by 

(4.7) 

Under the algebra (4.3), the screening charges have null weight and map the irrep 
[mJ a8 follows 

512 : [m13m23m331 - [mi3 - 1, "23 i- 1>m331 

'23 : [m13m23m331 Lm133 m23 - 1, m33 + '1 
s13 : [m~3m23m331 -+ [m13 - 1 , m ~ 3 ~  m33 + l1. 

- 
The Weyl reflections effect the changes 

rl * [m13m23m331 = [mZ3 - 1, m13 + 1, %I 
"2 * [m13~23~331  = [m133 m33 - 1? m23 -k l1 

on the representation labels which are equivalent to the permutations 

P13 * P23 

P23 ++ P33 

in terms of the partial hooks 
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4.8. The elementory tensors and their fusion rules 

The fundamental u(3) tensor [lo01 has  three possible shifts: A(r) = ( l , O , O ) ,  (0,1,0) 
and (O,O, 1). Under Weyl reflections, the final irreps read as follows: 

Using the  equivariance condition (2.6) and the table, we now seek to  construct the 
corresponding vertex operators. For example, we must verify that 

We find for the  three fundamental (unnorma!ked) vertex operators 

(4.9) 

= elqs[a,,, Q]. 

Reduced vertex operators for the first two tensors in (4.9) are easily obtained and 
correspond to  the case of maximally tied upper patterns (Le Blanc and Biedenharn 
1989, section 4.7). Of particular interest, however, is the  third vertex operator given 
previously. This operator realization has a non-maximally tied upper pattern and has  
not been obtained previously in such an explicit form. In tensorial notation, the 4 2 )  
spinor of this tensor i s  given by the commutator 

(4.iGa) - i o ~ r s I ~ O ]  n~ e '-L"' , a ' ]  

where Cl is the u(2) scalar 

= Zi3aj3Eij - (&:I - E33 + l)(Zi@i3) (4.10b) 
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with repeated indices running from 1 to  2. The 4 2 )  singlet, obtained through standard 
lowering techniques, is given by 

R Le Blonc e l  a/ 

- e'q' (('12 - 223813)(E21 - z13a23) - (E22 - '23'23 - '33 + - 'Ia8l3 - '33)) 

(4.11a) 

and has matrix element 

where [. , .] is a unitary 4 2 )  9-j recoupling coefficient, (10,-(m - l)]/JZ[lO]JJIO, -tu]) 
is an antispinor reduced matrix element, and the factor (p33 - p z z )  amounts to a 
difference of eigenvalues of the u(2) invariant operator R.  This matrix element and all 
other matrix elements pertaining to the elementary vertex operators with A3(r) = 1 
have been listed in table I. 

It is straightforward to normalize the third fundamental reduced vertex operator 
by dividing it by its 4 3 )  reduced matrix element 

[(P33 - P13 f 1)(P33 - P1&33 - P23 + ')(P33 - P23)11'2. (4.12) 

One then retrieves the results and phase convention of the pattern calculus of Bieden- 
harn and Louck (1968) for this fundamental projective operator. 

A second elementary 4 3 )  vertex operator [110] exists with three possible shifts 
A(r) = (1,1,0), ( l , O ,  1) and (0,1,1). Under Weyl reflections, the final irreps are: 

["%I + [A(r)l ri *(["%I + r 2  * (["%I + [A(r)l) 
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Using this table and equation (2.6), we find the following (unnormalized) vertex 
operators 

which we have also given in tensorial notation involving the u(2) vertex tensor opera- 
tors studied in section 3. The [110] vertex operators with A,(r) = 1 given previously 
have not been obtained previously in this explicit form. Matrix elements for these 
operators have been computed and listed in table 1. 

4.9. Structure of the elementary verlez operators 

A close look at table 1 shows that there is an underlying structure to these results 
which will enable us to recast all of table 1 into a single formula (given later). But 
first let us make a few additional notational comments (Biedenharn and Louck 1968). 

Elementary tensors for u(n) are antisymmetric tensors labelled by 

[ikon-,] E ] 
L times (n-k) times 

The shifts A(r)  and A(7) for these operators are permutations of these partitions. 
These shifts can be succinctly given by 

A(r)  = ( i l i2 .  ..ix) 
and 

A(T) = (.ii.i2. ...i,) 

where, for example, i, < i2 < . . .i, denotes the k places in the A(r) array where 
the Is occurs (with Os in all other places). For u(3), k = 1 or 2 only. 
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One has for any elementary u(3) normalized reduced vertex operator that 

When compared with the previously known result of section 4.7, we remark the 

( i j  T h e  is a iioimdiiaiion hitor, nanieiji 
following new features: 
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which arises because the vertex operators are not normalized. In particular, the n u m  
erator arises because 4 3 )  vertex operators can be made up of 4 2 )  vertex operators. 
Some factors may cancel in the numerator and denominator. For maximally-tied up- 
per patterns, these factors must and do in fact all cancel out and one retrieves the 
results of section 4.7. 

(ii) A polynomial factor, flj+(j,,,,,,jkl(p33 -pj2), now appears whenever the upper 
pattern is not maximally tied. 

(iii) The upper and lower u(2) labels of the vertex operator labels both appear on 
the second line in the 9-j symbol: for  U($) elementary tensors, the upper u(2) label 
mfers t o  the intrinsic u(2) tensorial properties of the vertex operator, that is that pad 
of the vertex opemtor which is coupled to  the  antispinor uariables (z13,z2,) o r  their 
derivatives. This is an interesting result a s  it indicates that there can be a functional 
meaning to the upper label. 

Unfortunately, this simple result does not generalize in a simple manner to higher 
order tensors as the results of the next section pertaining to totally symmetric vertex 
operators indicate (see nevertheless the discussions at  the end of sections 4.4 and 4.5). 

4.4. The totally symmetric U($) vertex opemtors 

The set of (multiplicity-free) totally symmetric u(3) vertex operators [mla, O,O] is 
easily constructed from the u(3) fundamental vertex operators using a bullding-up 
principle: a generic unnormalized symmetric vertex operator is simply given by 

R Le Blanc et  al 

A1 
A1 + A 2  = (e'" ) A 1  (eiql .91,)A2[ei91 -p3))IA3. 

0 
hw 

I t  is a vertex operator with 4 3 )  shifts given by A ( r )  = (A,,A,, A,) where 

m13 = A, + A, + A3 

It is straightforward t o  verify that this vertex operator has 

as 4 3 )  reduced matrix element when acting on the irrep [ml3mZ3m3& as can be 
verified using elementary recoupling coefficients (Le Blanc and Hecht 1987, appendix), 
equations (3.10) and (4.12). I t  effectively reduces to (3.10) when A, = 0,. 

Lower weight components for the totally symmetric tensor are relatively easy to 
obtain: one gets 

A1 
A1 + A2 0 

m13-k 0 
0 ( m13 

m13-k  
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or, in coupled form, 

This equality states that a generic 4 3 )  symmetric vertex operator is composed of a 
u(2) vertex operator of rank [A,, A,] and shift (A , ,  A,), and of a 4 3 )  vertex operator 
of rank [O,O, A,] and shift (0, 0, A,). This observation should make it easier to decipher 
the corresponding normalized reduced matrix element: 

X 



2 
m13 (A, + A2)!A3! (Pi3 - P33 - I)! [ ( + ‘2 + ‘3)’ (Pi3 - P33 - A3 - I)!  

(4.16) 

where 
my; = mI3 ( t )  - k 

,(I) - (4 
12 - m12 +TI1 

,(I) - (9 + myi - 22 - m22 

= [mm mm m33 + 

71 1 

and 

Although this matrix element does not present the structural simplicity of its coun- 
terpart in the previous section, the origin of the respective terms in this expression 
can nevertheless be traced back rather easily by comparing with equations (4.11) and 
(4.26). 
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It should be stressed that,  in the limit m!ji + --a7 (see the discussion at  the end 
of the next section for the rationale underlying this limit), only the term k3 = k in 
the various intermediate sums survives when k = A3. One then has the simple result 

X 

(4.17) 

4.5. The octet vertex opemtors 

The 4 3 )  octet vertex operators have particular significance since they carry the ad- 
joint representation. The operator set transforming as the octet induces the following 
shifts: 

rmi3 + 2, mm + 1, "'331 Lm23> mi3 + 3 ,  mssl Im13 + 2, m33 - 1, m23 + 21 
[m13+ Lm23+2,m331 [m23+Lm13+2,m331 bI3+ Lm33-l,mz3+31 
[mI3 + 2, m231 m33 + 11 Lm23 - 1, m13 + 3, m33 + 11 [mI3 + 2, m33, m23 + 11 
[mI3, m23 + 2, m3, + 11 h3 + 1, m13 + 1, m33 + 11 bI3, m33, m23 + 31 
[m13+1,m23,m33+21 [m23-1,m13+2,m33+21 [mi,+ 1,m3,+1,m2,+11 
h3, m23 + 1, m33 + 21 rm231 m13 + 1, m33 + 21 bI3, m33 + 1, m23 + 21 
[mi3 + 1,m2, + 1,m3, + 11 lm23s mi3 + 2, m33 + 11 [mi3 + 1, m33j m 2 3  + 21 

(last line occurs twice) 

One notices the characteristic double multiplicity for the shift A(r)  = (1,1,1). The 
corresponding vertex operators are not mixed with the other tensors by the equivari- 
ance condition (2.6). Writing 

t = ei(291+9~)(s12s23 + a([m3])sI3) 

for a generic tensor t belonging to this multiplicity set, the equivariance condition 
(2.6) allows us to solve for the unknown coefficient a([m3]): 

g " m n t 1  

Smm-mss t 1 

[(s12s23 + a([m31)s33)l = [('1ZS23 + a(rl * [m31)s13)1 s ~ ~ ' - m a ' + '  

[(s12s23 + a([m31)s13)l = [('1ZS23 + a(r2 * ['%I) 13 

12 

23 
)] n i z l - m a a + l  

'23 



1418 

We find the following vertex operator 

R Le Blanc et a1 

t = ei(2q1+q~)(s12s23 + sI3p2) + Xei(2q1+qz)s,3(p, + p2 +p3) 

where X is an arbitrary (real) number; that  is the equivariance condition (2.6) yields 
two independent solutions, as expected. For completeness, we give all the octet vertex 
operators in table 2. The multiplicity set for the shift A(r) = ( I , ] ,  1) is given by the 
1st  t,wo entries with a particular choice for X and a parficu!ar =signmen& ~f upper 
patterns which we shall now justify. 

Table 2. Vertex operators for the octet representation. 

PZ + 111 

The vertex operators with u(2) upper label [ll] have been identified as the su(3) 
generators to within a u(3) invariant factor ei(ql+qx+qs). The highest weight component 
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of this vertex operator is given by 

1419 

1 

u(E13)' 
ei(clttsAqs) ( 1 h:, 1 o)un = ei(2qx+q,)s13 = - e i (q t tq+qa)a  13 zz - 

The other octet vertex operators with shift A(r) = (1,1, l ) ,  to which must be a- 
signed the remaining u(2) upper pattern [20], can easily be made orthogonal to the 
generators as follows. Using a building-up principle according to which higher rank 
tensor operators can be constructed from powers of the elementary tensors, we set 

1 0 1 

* O 0 0 )"" 
hw 

(4.18) 

This equality amounts to the use of a Gram-Schmidt type of orthogonalization to de- 
fine the second tensor in terms of a product of elementary tensors minus the first tensor 
times a p-operator F ( p ) ,  that is a function of the momentum operators (pl,pz,p3). 
Although the Gram-Schmidt process is, in general, not canonical since it depends on 
the ordering of the vectors to be orthogonalized, this result is, however, equivalent 
to the canonical resolution. The latter uses the fact that the space of reduced octet 
vertex operators for maximal lower 4 2 )  shift is one-dimensional, and this not only 
uniquely resolves the octet multiplicity but extends to a resolution of all multiplicities 
for 4 3 )  vertex operators. 

The p-operator F ( p )  is easily evaluated. When acting on the irrep [m,], it  must 
take the value 

F(m3) = U([m3][ll0][m, + (lll)][lOO]; [m3 + (ll0)]--[21O].p = 1)  

(i) where U (  ) is a 4 3 )  recoupling coefficient in Hecht's notation (Hecht 1965, Ver- 
gados 1968) computable in terms of matrix elements of the first octet vertex operator, 
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(ii) and where the various quantities (-11[-]11-) are u(3) reduced-matrix elements 
of the unnormalized vertex operators. They all have been given in the previous sections 
except for 

(Baird and Biedenharn 1965, Hecht 1965) where g is the 4 3 )  Casimir invariant 

(4.19) (Pi f P2 - 2P3)(P1 - P3 + 3)(Pz - P3 + 2) 
F ( p )  = [2((P~ - P2)2 + (P2 - P3)2 + (Pi - P2)(P2 - P3) + 3(Pi - P3)) 

Our specific pattern assignment has its rationale in an expected limit property 
for the projective operators (Louck and Biedenharn 1973, Le Blanc and Biedenharn 
1989): it states that  

(4.20) 

This limit has been verified to hold for the octet vertex operators with shift A(r)  = 
(lll), the totally symmetric vertex operators of the last section, the vertex operators 
with maximally-tied upper patterns of section 4.7, as well as for all matrix elements 
in table 1. These results confirm the conclusion already reached in section 4.3 which 
states that  a functional meaning can be ascribed to the hitherto abstract upper pat- 
tern: the 43) vertex operator corresponding to the upper pattern r involves in its 
decomposition the u(2) vertex operator (r). The presence of the latter is readily made 
apparent by the limit (4.20). 
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4.6. The self-conjugate vertex opemtors 

The next family of vertex operators which we shall briefly study is the set corre- 
sponding to the self-conjugate irreps [2k, k, 01. We shall only be interested in those 
self-conjugate operators [Zk, k, 01 belonging to the multiplicity set of order k + 1 cor- 
responding to the shift A(r)  = (k, k, k): 

[mI3 + k, m23 + k, [mZ3 + k - 1,  mI3 + k + 1, m33 + k] 
m33 + kl 

[mI3 + k, m33 + k - 1, 
mZ3 + k + 11 

Since a resolution of the multiplicity problem for the self-conjugate vertex operators 
with shift A(r)  = (k,k,k) amounts in effect to a complete resolution of the u(3) 
multiplicity problem, i t  is therefore interesting to see how this multiplicity manifests 
itself in the present framework. 

A generic tensor [2k, k, 01 with shift A(r)  = (k, k, k) can be written down as 

(4.21) 

where we seek t o  determine the coefficients a l .  Equation (2.6) implies the relations 

[ ~ 0 1 ( [ ~ ~ ) ( s 1 2 s 2 3 ) * - ' s ~ 3  1 smls-mls t 1 
i a  

(4.22) 

Reordering the screening charges, the coefficients al([m3]) are found to obey the con- 
ditions 

It is straightforward to verify that these two equations have the following k + 1 inde- 
pendent solutions 

[Siasz3 + mz3s13Ix-J[(m13 + m23 + "ds131' 0 I i I k 
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thus yielding the following vertex operators 

( 2 k  hw 

., 
k 

k j o)un = ewqn+q2) ['12'23 + s13P21k-' [S13(P1 + P2 + P3)lJ 
2k - j 

(4.24) 

0 5 j 5 k ,  composing the multiplicity set. This multiplicity set is seen to have a 
structure generalizing that of the octet. The j t h  tensor is seen to be a product of 
[k - j times] the second octet operator (modulo a linear combination of operators 
with greater j s )  times times] the first octet operator (the 4 3 )  algebra). This 
tensor can thus change the lower 4 2 )  labels [ml2mZ2] in the Gel'fand pattern of the 
initial irrep by at  most Al(y) - A2(7) = Zk - Z j ;  that is this tensor yields (after the 
canonical orthonormalization) the canonical set of unit tensors [ Z k ,  k ,  01. 

4.7. The uerlez operators with maximally-tied upper patterns 

Multiplicity free vertex operators with maximally-tied upper patterns have already 
been discussed by Le Blanc and Biedeuharn (1989). We only remark that these oper- 
ators can be written in terms of screening charges as 

where 

r12 = m13 '22 = m23 

One notices that, apart from the s u ( 2 )  scalar factor emmsaq3, these vertex operators 
are entirely given in terms of u(2) vertex operators and this explains why their matrix 
elements are computed so easily as we now briefly explain. 

One obtains for this class of 4 3 )  vertex operators the reduced normalized matrix 
element (Le Blanc and Biedenharn 1989) 
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(4.26) 

where 

To obtain such a simple result, we use the fact that 

e i ( ~ ~ ~ q ~ + ~ ~ ~ q ~ ) s m ~ ~ - r , ,  
12 

is also the u(2) vertex operator studied in section 3: i t  has a well-defined action on 
the intrinsic "(2) labels [mI3mz3] (as can be read from the 9-j symbol) and its 4 3 )  
reduced matrix element is equal in magnitude to the su(2) reduced matrix element of 
the corresponding u(2) vertex operator. (Indeed, the various vertex operators involved 
here affect only the two first entriesof the partition [mJ.) All reduced matrix elements 
ihen cancei oui and no poiynomiai factors arise. T i e  construction oisuch u(5) vertex 
operators accordingly requires the prior explicit construction of u(2) vertex operators 
effected in section 3. 

5. Summary and conclusions 

The primary purpose of this paper is to obtain analytic results for both screening 
operators and vertex operators in the unitary group SU(n), using the technique of 
holomorphic induction (generalized coherent state techniques). To accomplish this 
requires giving an explicit Fock space realization of the Lie algebra (sections 3 and 
4.1) and the relevant equivariance condition (equation (2.6)) required to  extend the 
vertex operators t o  an action on Fock modules. 

For U(2), the unique screening charge is given in equation (3.6), and all vertex 
operators are constructed explicitly in equations (3.13) and (3.14). 

An explicit realization of the Lie algebra of U(3) by linear differential operators 
acting on the space of holomorphic sections over the flag manifold is given in sec- 
tion 4.1. This (standard) realization is transformed explicitly ('untangled') to  give the 

fold (SU(2) x U(l))/SU(3).  This structure is extended to  Fock space and the three 
screening charges given in equation (4.7). 

New results for the fundamental vertex operators in U(3) are given in tables l (a ) ,  
(b) and ( c ) .  An analysis of the structure of these results leads to a single formula 
encompassing all results for all elementary U(3) vertex operators (operators whose 

vP~!or-~OhPrPnt-state rea!iz&on (sec!ion 4.3) which is atl_a"etl_ to the K%h!er mzni- 
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irrep labels (Young frame) consist of only 1s and Os): this is equation (4.13). This 
result is new. 

R Le Blanc et  a/ 

Complete results are also given for these special cases: 
(a) The totally symmetric vertex operator (mi3OO): equation (4.16) 
(b) Vertex operators with maximally tied operator patterns: equation (4.26). 
In these special cases, the explicit results are given in aform such that the structure 

is evident (~K-factors and (9-j) coefficients). 
To illustrate the canonical splitting of the multiplicity, the self-conjugate vertex 

operators (for.the special case of highest weight) are given in section 4.5 (for the octet 
(adjoint) case) and in section 4.6 (for the general case). 

Aside from direct applications in the relevant unitary group, we believe these 
results will be useful as models for the construction of vertex operators and screening 
operators in the affine unitary group using techniques developed by Bouwknegt el a/ 
(1990). 
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